

COMBINING ANALYSIS AND SYNTHESIS IN THE
CHUCK PROGRAMMING LANGUAGE

Ge Wang Rebecca Fiebrink Perry R. Cook
Princeton University

Dept. of Computer Science
Princeton, NJ USA

gewang@cs.princeton.edu

Princeton University
Dept. of Computer Science

Princeton, NJ USA
fiebrink@cs.princeton.edu

Princeton University
Dept. of Computer Science

(also Music)
Princeton, NJ USA

prc@cs.princeton.edu

Figure 0. A ChucK-based programming model for building audio analysis and synthesis programs.

ABSTRACT

In this paper, we present a new programming model for
performing audio analysis, spectral processing, and
feature extraction in the ChucK programming language.
The solution unifies analysis and synthesis in the same
high-level, strongly-timed, and concurrent environment,
extending and fully integrating with the existing
language framework. In particular, we introduce the
notion of a Unit Analyzer (UAna) and new constructs
for dataflow, data types and semantics for operations in
analysis domains, and mechanisms for seamlessly
combining analysis and synthesis tasks in a precise,
sample-synchronous manner. We present the motivation
of our system, and describe new language-level
syntaxes, semantics, and the underlying implementation.
We provide code examples and discuss potential uses
and benefits of the system for audio researchers,
performers, and teachers.

1. MOTIVATION

Combining analysis and synthesis in the same
framework can lead to interesting applications, as
exemplified by the works of Roger Dannenberg and
Chris Raphael [7], Nick Collins [4], and many others.
Existing systems are mostly implemented in
combinations of low-level C modules, open source
libraries and frameworks, high-level languages, and
proprietary software. We’d like to enable more people
to experiment with, prototype, and create new tools and
systems like these, starting from a single unified, high-
level platform, without minimizing the need to develop
plug-ins in other languages (e.g., C) or to write custom
low-level modules from scratch.

Such a unified programming platform, we believe,
should successfully address the following issues. First,
in many musical applications, analysis and synthesis
inform one another. Therefore, the environment should
facilitate and encourage this symbiotic relationship,
placing equal emphasis on the two, and providing
flexibility and ease of programming for both. Next, the
system should present a precise and flexible
programming model with which programmers can
rapidly prototype and implement analysis and synthesis
tasks – and perhaps even do on-the-fly. Additionally,
the high-level abstractions in the system should expose
essential low-level parameters while doing away with
syntactic overhead, thereby providing a highly flexible
and open framework that can be easily used for a variety
of tasks. Finally, it’s extremely important that the
written code represent the underlying algorithms and
dataflow precisely and clearly. Overall, we envision a
language that meets these criteria and that can be
equally suitable for audio research (e.g., synthesis,
spectral processing, feature extraction), pedagogy,
composition, and musical performance.

There exist frameworks and languages that
effectively address some components of our goals,
including synthesis systems that accommodate analysis
tasks and vice versa, and standalone systems that
perform a specialized analysis/synthesis task. What we
hope to achieve, in this work, is to produce a single
programming platform that meets the need of a broad
audience by offering solutions from programming
language perspective. In doing so, we hope to encourage
new and different ways to think about audio
programming for audio and synthesis.

In this paper, we present our programming model for
specifying precise audio analysis and synthesis tasks in
the ChucK programming language – specifically
designed to address the goals we outlined above. We

have designed and implemented new language
constructs and integrated them into the existing ChucK
framework, in a way that strives to capitalize on
programmers’ understanding of the existing language
features, making analysis objects, dataflow, and control
analogous to (but appropriately distinct from) their
synthesis counterparts. The new system inherits the
precise timing and concurrency model of ChucK and
supports a syntax that clearly delineates dataflow and
control in both analysis and synthesis processes.

The rest of this paper is organized in the following
way. In Section 2, we situate our motivations and goals
in the context of existing analysis and synthesis
environments and tools. Section 3 presents our design of
a new hybrid analysis/synthesis programming model. In
Section 4, we illustrate this system using several
examples of basic building blocks for analysis tasks.
Section 5 addresses the implementation decisions
involved in creating and integrating this model into
ChucK. We conclude by discussing potential
applications of a unified ChucK analysis/synthesis
environment in Section 6 and future work in Section 7.

2. RELATED WORK

2.1. Analysis In Synthesis Environments

There are several high-level synthesis programming
environments that provide modules for analysis-related
tasks. Max/MSP [20] provides objects for forward and
inverse FFT (via the fft~, ifft~, and related
objects), constructs to facilitate windowing and overlap
(e.g., pfft~), and support for frame-based operations.
SuperCollider [15] provides FFT/IFFT Unit Generators
as well as a variety of specialized objects for spectral
processing (e.g., the PV_* objects as well as third-party
objects for feature extraction and onset detection [5]).
CSound [24] includes a variety of FFT-based spectral
processing tools (e.g., cvanal, hetro, lpanal,
pvanal). The analysis functionality of these systems
relies on pre-made, “black-box” objects (e.g., coded and
imported from C/C++) to meet the needs for common,
specific analysis tasks. While these are powerful for
many types of tasks, these environments, in general, are
more intended for synthesis and less for designing and
implementing new, low-level analysis systems directly
in the language. Furthermore, many low-level analysis
design tasks demand clear and precise control over time,
and we believe that this may be difficult to achieve for
many analysis tasks in existing systems.

Nyquist [6] allows programs to perform FFT/IFFT
and directly access and manipulate frame-level data,
which opens the door to explicit, low-level analysis and
spectral manipulation in the program. Our system builds
on this idea by providing a distinct, general class of
analysis objects and by allowing a generic
representation of the data passed between analysis
modules (including, but not limited to, FFT frames).
Furthermore, our analysis system applies the existing
ChucK framework of time-based control and module
connection for analysis.

2.2. Frameworks for Audio Analysis

Recent years have seen a proliferation of general tools
and frameworks to perform audio analysis, particularly
in the area of music information retrieval (MIR).
Commonly used tools specialized for MIR include
MARSYAS [23], CLAM [1], SndObj [12],
MATLAB/Octave [14], M2K [8], and jAudio [16] /
jMIR [17]. These tools support feature extraction from
audio files, and classification and learning from these
features. MARSYAS, SndObj, and CLAM also provide
objects for high-level analysis/resynthesis (e.g.,
phasevocoder, sinusoidal resynthesis, spectral modeling
synthesis). These are primarily libraries and
frameworks; as such, they offer programmability at a
different level than languages such as ChucK. As far as
we can tell, there is no high-level language specialized
for analysis tasks, much less one focused on support for
real-time combined analysis and synthesis. Therefore,
we feel that a ChucK-oriented programming model can
be potentially interesting in its own right, and may serve
as a complimentary tool to existing systems.

Rapid prototyping tools have an established role in
MIR. M2K, for example, has been developed for this
purpose. It provides a graphical patching environment
for feature extractors, classifiers, and other modules.
Dataflow and functionality in M2K itineraries are
determined by connections between built-in and user-
created objects, implemented in Java. MARSYAS also
provides support for rapid prototyping, via Python and
MARSYAS Scripting Language [3]. Our approach
differs from these in that we hope to enable rapid
experimentation from a single, high-level programming
platform, further reducing turnaround time.

2.3. Analysis and Resynthesis Applications

There exists a set of applications such as AudioSculpt
[2], SPEAR [10], and TAPESTREA [18] that integrate
analysis and synthesis capabilities, in order to perform
tasks such as transformation and resynthesis of existing
sounds, and other processing such as cross-synthesis.
These are specialized and do not intrinsically offer
programmability, whereas we are interested in allowing
programmers to implement similar tasks “from scratch”
and to do so in real-time.

2.4. ChucK

ChucK [25] is a programming language for audio
synthesis, whose programming model promotes a strong
awareness of time and concurrency, and encourages
rapid experimentation via on-the-fly programming. Unit
generators can be dynamically connected and control
can be asserted at any unit generator at any time and at
any rate. ChucK also supports a precise concurrent
programming model in which processes (called shreds)
can be naturally synchronized via the timing mechanism
and events. The property of precise low-level control
over time and parallelism embedded in a high-level
language is a foundation of ChucK’s design, and we
believe this property is highly desirable in programming
analysis systems as well.

3. DESIGNING FOR ANALYSIS IN CHUCK

One of the first tasks in integrating analysis into ChucK
was to design a hybrid programming model where both
analysis and synthesis components fit naturally into the
language and can work well together. Questions that
arose include the following. How does a “strongly-
timed” programming language handle operations and
data/metadata in frequency (and other) domains? How
might we exploit analogies to existing synthesis
paradigms to allow elegant representation of analysis in
the code? What is the appropriate level of detail and
control, and how can we provide this while maintaining
clarity and conciseness in the code? How should the
similarities and differences between analysis and
synthesis be reflected in the syntaxes and semantics?

One observation that shaped the answers to some of
these questions was that even though we wish to carry
out computation in transform domains (e.g., frequency),
we still need to understand and control these operations
with respect to time. For example, real-time spectral
analysis is commonly performed via the Short-Time
Fourier Transform (STFT), breaking up the audio
stream into overlapping windows. In such analysis,
parameters such as windowing, zero padding, and
overlap and hop size can be crucial to the quality of the
analysis. We wish to allow programmers to flexibly
control these and other parameters over time, to operate
on the results in a straightforward manner, and to reason
about how and when analysis computations occur.

Our solution is threefold. First, we introduce the
notion of a Unit Analyzer, which carries with it a set of
operations and a connection model that resemble but are
distinct from those of a Unit Generator. Following from
this connection model, we then present an augmented
dataflow model with datatypes, operators, and new
objects. Third, we make use of the existing timing,
concurrency, and event mechanisms in ChucK as a way
to precisely control analysis processes. In the following
subsections, we present each component in the context
of established mechanisms for synthesis in the ChucK
language. Section 4 supplies more in-depth and concrete
examples to illustrate these ideas in practice.

3.1. Unit Analyzer

The Unit Generator (UGen) [13] is a building block of
many synthesis systems, including ChucK. It is a
modular abstraction of a single operation whose input
and output are audio samples, and whose behavior is
controlled through parameters that can be modified over
time. In ChucK, UGens can be dynamically connected
and disconnected in a global synthesis network, via the
ChucK (=>) and unChucK (=<) operators. The ChucK
Virtual Machine synchronizes the computation of the
UGen network with that of ChucK shreds.

The principles of modularity, control via parameters,
and relationship to a network of operations are well
understood and might be applied to analysis “building
blocks” as well, where the input and/or output may be
data other than audio samples. Therefore, we introduce

the notion of a Unit Analyzer (or UAna, pronounced “U-
Wanna,” plural UAnae). Like a UGen, a UAna defines a
set of control parameters and can be dynamically
patched with other UAnae and UGens. In contrast to
UGens, UAnae pass generic data that may be in the
form of spectral frames, feature vectors, metadata, or
any other (intermediate) products of analysis. Natural
candidates for UAnae include domain transformations
such as FFT/DWT, feature extractors such as RMS,
Flux, ZeroCrossing, and operations such as Correlation.

3.2. Dataflow

Currently in the language, the ChucK operator (=>)
specifies how samples are passed between UGens in a
synthesis network with respect to time. In a UGen-only
network, UGens are connected via => in a chain that
terminates at a system-defined “sink” UGen (e.g., dac).
The sink drives audio computation by “pulling” samples
through the chain, starting with its “upstream” UGen
neighbors. When an intermediate UGen is pulled (i.e., a
downstream UGen requests the next sample), it first
requests the sample from its upstream neighbor(s), then
performs its own computations, and finally passes the
output downstream. (This is often referred to as the
“pull model.”)

Figure 1. The ChucK and upChucK operators. Note
how the upChucK is similar in representation but
suggests orthogonal type of connection.

Because data passed between UAnae is not
(necessarily) audio samples, and the relationship of
UAna computation to time is fundamentally different
(e.g., UAnae might compute on blocks of samples, or on
metadata), the connections between UAnae have a
different meaning. This difference is reflected in the
choice of a new connection operator, the upChucK
operator: =^ (see Figure 1). =^ has the following
properties. First, a connection can be created between
two UAnae using =^ to indicate that the upstream UAna
should pass its output as an input to the downstream
UAna. This data is generated and passed at the pull
request from the downstream UAna. Unlike the UGen
pull model, however, there is no cascade of UAna pull
requests that is automatically initiated by a sink. Instead,
UAna chains must be explicitly driven by an operation
in code, invoked at the UAna where analysis output is
desired. This operation is performed via the
.upchuck() member method, which initiates a cascade
of pull requests upstream along all UAnae connected
using =^, and then returns the analysis result at this
point (see Figure 2 for an example). Because of the
generic nature of data passed between UAnae and the
need to directly access intermediate analysis data, the
analysis output is represented in UAnaBlob objects,

which can contain vectors and matrices of numeric data
as well as object references.

Figure 2. An example UAna network.

The combination of =^ and the explicit .upchuck()
operation allows the programmer to clearly construct
UAna networks, and to selectively compute subgraphs
at precise points in time. Each UAna caches its most
recently computed UAnaBlob, associating it with a
ChucK time stamp. If additional pull requests arrive at
the same point in ChucK time, the cached copy is
returned. Finally, it is possible to use => to connect
UGens and UAnae together, providing the means both
to bridge synthesis and analysis subgraphs and for
UAnae to generate and process audio samples (see
Figure 3 for example).

Figure 3. Connecting UGens to UAnae and back.

3.3. Programming Model and Time

One of the central strengths of ChucK is its precise
control over time from the language. Embedded time
advancement directives (e.g., 10::ms => now;) allow
programmers to specify timing at both high and low
levels, and lead to more readable code in which exact
timing can be readily inferred. Time is essential to
synthesis in ChucK, for the timing directives serve as
synchronization mechanisms between shreds in the
ChucK virtual machine and UGens in the synthesis
engine. In a sense, time is sound in ChucK.

Figure 4. FFT analysis.

We adopted this time-based programming model for
the analysis system, allowing the programmer to invoke
the .upchuck() operations at any point in time. This
model extends to analysis, the precision and clarity of
the synthesis programming model. For example, in
Figure 4, we show an example of taking successive
STFTs via the FFT UAna. Using the timing model, we
are able to advance time by arbitrary “hops.” Note that
the key parameters of STFT are clearly represented.
Furthermore, this model allows hop size and overlap to
be dynamically changed in a natural and highly precise
manner.

Additionally, we can create concurrent, hybrid
analysis/synthesis programs, where various components
can compute at potentially different rates. We can also
leverage the concurrent and event programming model
to provide additional clarity and control in a multi-
shredded, multi-rate environment. Figure 5 shows an
example involving generic UAnae.

Figure 5. Multi-shredded, multi-rate analysis, with
event notification.

The three components presented in this section form
the basis of our analysis programming model.We next
illustrate the flexibility and clarity of the system via
more example code and discussion regarding several
classes of analysis tasks.

4. EXAMPLES

4.1. Spectral processing

We first demonstrate some spectral processing building
blocks by dissecting a simple FFT-based cross-
synthesizer, shown in Figure 6. We first instantiate two
FFT UAnae, and connect one audio source to each (lines

2–3). FFT is a special type of UAna, which
“accumulates” audio samples from a UGen input. For
this reason, we connect both to either dac or
blackhole, which drives the UGen network
(blackhole is much like dac, but produces no sound
output). We then create and connect an IFFT object to
the dac. IFFT is also special in that it produces audio
samples. When pulled by dac, IFFT supplies the next
samples in its overlap-add result buffer. Next, we set the
parameters of the FFT and IFFT objects (lines 6–13).
We then create two complex arrays to hold the output of
the FFT’s (lines 12–13). Native complex and polar
datatypes and associated operations have been added to
facilitate spectral processing (see Section 5).

In the control loop, the .upchuck() causes the FFTs
to perform the transformations on the data in their
respective accumulation buffers (this will compute on
empty or partially empty buffers at startup). The results
are acquired, point-wise multiplied, and copied back
(lines 23–29). The IFFT object is then upchucked (line
31); the results of the inverse transform will be overlap-
added into the IFFT’s output buffer. Lastly, we advance
time by one hop before repeating the loop (line 34).

Figure 6. A simple FFT-based cross synthesizer.

4.2. Feature Extraction

Our system supports straightforward extraction of
arbitrary time and frequency domain features, which
might be stored or used as parameters to drive real-time

synthesis. For example, Figure 7 shows the UAna
network for extracting several standard spectral features.
In this example, we create an optional “agglomerator”
UAna that does no computation but, when upchucked,
drives the synchronous computation of all UAnae
connected to it. The output of the FFT object is
connected to each of these spectral feature extractors, so
synchronous feature computation can take advantage of
caching at the FFT object. Alternatively, the
programmer can also choose to .upchuck() each
feature extractor at separate rates. Note that this can be
easily modified to be multi-shredded and event-driven,
similar in form to the example in Figure 5.

Figure 7. Simple spectral feature extraction. Note that
parameters can be dynamically set for feature
extractors at any point in the code.

The list of supported or planned feature extractors
includes Centroid, RMS, Flux, RollOff, MFCC,
ZeroCrossing, Correlation, and several others. Since we
can directly access and manipulate the intermediate
analysis results (via UAnaBlobs) at any point, it is also
possible to experiment with and implement custom
feature extraction algorithms directly in ChucK.

4.3. Combining Analysis and Synthesis

A primary goal of the system is easy integration of
analysis and synthesis in the same program. As a simple
example, consider the real-time separation of vowels
and consonants in an input audio stream into distinct
channels. UAnae would be responsible for identifying
the vowel/consonant components while UGens would
be used before and after analysis to capture and render
the audio, informed by the analysis results in real-time.

Another example of a hybrid system is real-time LPC
analysis, transformation, and resynthesis [19]. In this
case, one might use the Correlation object to compute
the linear prediction coefficients, along with pitch/non-
pitch and power estimation. These coefficients can
either be stored or relayed to LPC resynthesis module
for transformation and rendering.

These are a few examples of what is possible. By
leveraging the generality and precision of the model, we
believe it can be straightforward to specify a variety of
algorithms for synthesis and analysis directly in ChucK.

5. IMPLEMENTATION

5.1. Underlying Language Support

In order to support the analysis system described above,
we have made the following additions to the ChucK
programming language and virtual machine. First, we
added native datatypes for UAna, UAnaBlob, complex
and polar, and defined their behaviors on relevant
operations. We then extended the UGen framework and
introduced a UAna data pipeline, as well as support for
introducing new UAna objects into the type system and
virtual machine. Additionally, we implemented an initial
set of basic UAnae.

Figure 8. Some operations on complex and polar
types.

5.2. Complex and Polar Data Types

As part of our goal of placing equal emphasis on
analysis and synthesis, we introduce two additional data
types: complex and polar, intended provide strongly-
typed and flexible handling of data, particular for
spectral processing, where the need to manipulate
scalars and vectors in complex or polar form arises more
frequently.

In the new analysis system, complex values can be
stored in complex and polar variables and expressions
and used in computation. Their components can be
accessed via the dot operator. See Figure 8 for
examples of use.

5.3. Dataflow Pipeline

In order to support the semantics of .upchuck(), we
have integrated a UAna subsystem into the ChucK
engine. Similar to synthesis, where UGens are “ticked”
to generate and/or process audio samples, UAnae are
“tocked” to generate and process UAnaBlobs. A
separate “overlay” UAna network is maintained over the
synthesis network. The reason is for this is that some
UAnae (e.g., FFT and IFFT) deal with both audio
samples and UAnaBlobs. In the case of domain
transformation UAnae such as FFT and DWT, samples
are ticked into an “accumulation buffer” that always
holds the previous W samples, where W is equal to the
window size. This allows the UAna to be upchucked at
any point in time to produce UAnaBlobs that hold the
results of the transformation. Because UAnaBlobs are
time-aware, the system can automatically and safely
reuse analysis results for .upchuck() requests made at
the same ChucK time. An example dataflow pipeline is
depicted in Figure 9.

Figure 9. Underlying pipeline of a generic hybrid synthesis/analysis system.

6. POTENTIAL APPLICATIONS

6.1. Audio Analysis Research and Pedagogy

One of the primary strengths of our ChucK-based
analysis system is that programmer can specify analysis
task with sample-synchronous precision. This allows
for the exact scheduling of operations, and also allows
any parameter to be changed at any time. For example,
for FFT analysis, it's possible to conduct FFT analysis
with dynamically changing window, hop and FFT sizes.
With concurrency, programming precise analysis and
synthesis processes is straightforward. This has
potential benefits in prototyping systems for audio
compression, multi-rate spectral estimation and
tracking, and representing complex analysis systems as
smaller, simpler, concurrent components.

Due to the precise and concise syntax of the language
support for analysis, and because of ChucK’s support
for on-the-fly programming [26], another potentially
useful application is fast prototyping for new algorithms
in analysis and hybrid analysis and synthesis systems.
Using the tenets of ChucKian on-the-fly programming,
it is possible to craft programs whose fundamental
structure and logic can be altered in real-time for rapid
turn-around in experimenting with new ideas.

Additionally, since the programming model is such
that the code can accurately and completely specify an
algorithm in terms of dataflow and timing, ChucK
source code can serve as a clear and compact vehicle for
communicating new ideas and algorithms within a
community, or perhaps to document how part of an
algorithm works. It seems potentially useful (and fun)
to be able to exchange the latest ideas as code, and to
then be able to immediately test it and make new
modifications.

The deterministic and concise nature of the system
can also facilitate education, allowing teachers to
demonstrate analysis algorithms clearly, while the rapid
prototyping can provide a potentially more “online” and
“by-example” approach to teaching concepts in and out
of the classroom. This approach also has the advantage
of staying in a single environment, without having to
require students (and graders!) to negotiate multiple
languages and programming paradigms. Lastly, the
programming model is both high-level and detailed (i.e.,
it exposes low-level control) at the same time. As
demonstrated by earlier examples, the representation
provides direct control over analysis parameters and
data, allowing students to immediately and accurately
experiment with these concepts.

6.2. Synthesis and Performance

Because both analysis and synthesis components work
and interact in the same language, it can be
straightforward to prototype and create hybrid systems
for analysis-driven synthesis. For example, ChucK can
serve as a useful workbench for experimenting with
systems for data-driven concatenative synthesis [22],
feature-based synthesis [9], and audio mosaics [11].
Also, one can imagine implementing analysis tasks such

as spectral modelling synthesis [21], onset detection,
instrument identification, beat-tracking, and others as
building blocks for exciting new synthesis and
performance systems directly in ChucK. Furthermore,
the ability to integrate on-the-fly programming of
analysis and learning techniques into a synthesis
environment holds the potential of enabling new and
interesting musical applications.

7. FUTURE WORK AND CONCLUSION

Next steps in this work include implementing additional
UAnae to further enable rapid prototyping with basic
analysis modules. Further development on analysis
objects distributed with ChucK will continue to attend to
the balance between low programming overhead and
flexible control. In general, we favor simpler and more
general modules over ones intended for specific tasks,
as we hope to make it easy to create highly customized
systems directly in ChucK. Another exciting vein of
work is to investigate new language-level solutions to
supporting real-time and on-the-fly learning and
classification.

In conclusion, we have introduced a new
programming model for specifying and controlling
analysis and for working with hybrid analysis/synthesis
systems. We presented our notion of a Unit Analyzer,
as well as a means for understanding how general
analysis tasks may be accomplished by a network of
such objects. Strengths of the model include a clear
representation of dynamic dataflow between and among
analysis and synthesis components, and a precise
mechanism for specifying and understanding how
analysis is performed in time. Furthermore, the syntax
exposes low-level control in a concise and
straightforward manner.

Our new ChucK system offers a single platform in
which programmers can craft new analysis algorithms in
the language, perform analysis-informed synthesis in
real-time, and rapidly prototype novel audio algorithms.
The precision, clarity, and on-the-fly nature of analysis
and synthesis in ChucK, we hope, can lead to exciting
new applications. Finally, we hope this model can
provide a different way of thinking about programming
analysis (and synthesis) for research, performance, and
pedagogy.

ChucK is open-source and freely available:

http://chuck.cs.princeton.edu/

ACKNOWLEDGEMENTS

Special thanks to George Tzanetakis, Dan Trueman, and
Spencer Salazar for many illuminating discussions.

REFERENCES

[1] Amatriain, X., P. Arumi, and M. Ramirez. 2002.
“CLAM, yet another library for audio and music
processing?” Proc. ACM OOPSLA.

[2] Bogaards, N., A. Röbel, and X. Rodet. 2004.

“Sound analysis and processing with AudioSculpt
2.” Proc. ICMC.

[3] Burroughs, N., A. Parkin, and G. Tzanetakis. 2006.
“Flexible scheduling for dataflow audio
processing.” Proc. ICMC.

[4] Collins, N. 2007. “Towards autonomous agents for
live computer music: Realtime machine listening
and interactive music systems.” PhD Thesis. Centre
for Science and Music, Faculty of Music,
University of Cambridge.

[5] Collins, N. 2006. “BBCut2: Incorporating beat
tracking and on-the-fly event analysis.” Journal of
New Music Research 35(1): 63–70.

[6] Dannenberg, R. B. 1997. “Machine tongues XIX:
Nyquist, a language for composition and sound
synthesis.” Computer Music Journal 21(3): 50–60.

[7] Dannenberg, R. B., and C. Raphael. 2006. “Music
score alignment and computer accompaniment.”
Communications of the ACM 49(8): 38–43.

[8] Downie, S. 2004. “International music information
retrieval evaluation laboratory (IMIRSEL):
Introducing M2K and D2K.” Handout at ISMIR.
http://www.music-ir.org/evaluation/m2k/
v4_ISMIR2004_Handout.pdf

[9] Hoffman, M., and P. R. Cook. 2006. “Feature-based
synthesis: A tool for evaluating, designing, and
interacting with music IR systems.” Proc. ISMIR.

[10] Klingbeil, M. 2005. “Software for spectral analysis,
editing, and synthesis.” Proc. ICMC.

[11] Lazier, A., and P. R. Cook. 2003. “MoSievius:
Feature-based interactive audio mosaicing.” Proc.
DAFx.

[12] Lazzarini, V. 2000. “The sound object library.”
Organised Sound 5(1): 35–49.

[13] Mathews, M. V. 1969. The Technology of
Computer Music. MIT Press.

[14] Mathworks, Inc. MATLAB Documentation.
http://www.mathworks.com/

[15] McCartney, J. 1996. “SuperCollider: a new real-
time synthesis language.” Proc. ICMC.

[16] McEnnis, D., C. McKay, I. Fujinaga, and P.
Depalle. 2005. “jAudio: A feature extraction
library.” Proc. ISMIR.

[17] McKay, C. jMIR Sourceforge Project.
http://sourceforge.net/projects/jmir

[18] Misra, A., P. R. Cook, and G. Wang. 2006.
“Musical tapestries: Re-composing natural sounds.”
Proc. ICMC.

[19] Moorer, J. 1979. “The use of linear prediction of
speech in computer music applications.” Journal of
the Audio Engineering Society 27(3): 134–40.

[20] Puckette, M., 1991. “Combining event and signal
processing in the MAX graphical programming
environment.” Computer Music Journal 15(3): 68–
77.

[21] Serra, X., and J. O. Smith. 1989. “Spectral
modeling synthesis.” Proc. ICMC.

[22] Schwarz, D. 2004. “Data-driven concatenative
sound synthesis.” PhD Thesis. University Paris 6.

[23] Tzanetakis, G., and P. R. Cook. 2000. “MARSYAS:
a framework for audio analysis.” Organised Sound
4(3).

[24] Vercoe, B., and D. Ellis. 1990. “Real-time
CSOUND: Software synthesis with sensing and
control.” Proc. ICMC.

[25] Wang, G., and P. R. Cook. 2003. “ChucK: a
concurrent, on-the-fly audio programming
language.” Proc. ICMC.

[26] Wang, G., and P. R. Cook. 2004. “On-the-fly
programming: Using code as an expressive musical
instrument.” Proc. NIME.

